Basics

1311 F2 cover

A 1kV Discharge Directly onto a Staple Leads to Increased Energy Penetration Inside Metallized Static Shielding Bags

1311 F2 coverEditor’s Note: Due to the overwhelming amount of positive feedback from the September 2013 issue of In Compliance (pp. 42-48), a follow-up article with additional lab testing by the author was necessary to respond to an aerospace prime.

Thank you for your informative article on “Pin Holes & Staples Lead to Diminished Performance in Metallized Static Shielding Bags.” Have you considered what happens if there is an ESD discharge to the staple in a bag?

1108_mrstatic_fig1

How Is Static Electricity Generated?

Associate Professor Neils Jonassen authored a bi-monthly static column that appeared in Compliance Engineering Magazine. The series explored charging, ionization, explosions, and other ESD related topics. The E... Read More...

Charging by Walking

Associate Professor Neils Jonassen authored a bi-monthly static column that appeared in Compliance Engineering Magazine. The series explored charging, ionization, explosions, and other ESD related topics. The E... Read More...
1309 mrstatic eq1

Is Static Electricity Static?

Associate Professor Neils Jonassen authored a bi-monthly static column that appeared in Compliance Engineering Magazine. The series explored charging, ionization, explosions, and other ESD related topics. The E... Read More...
1309 F4 cover

Pin Holes & Staples Lead to Diminished Performance in Metallized Static Shielding Bags

1309 F4 coverAs early as 1985, the author recalls re-occurring discussions of the effects of puncture holes from component leads and stapling of static shielding bags.

In July 2013, the ESD Experts page on LinkedIn® started a discussion by a USA computer manufacturing company that generated participation from end users, suppliers and consultants both here and abroad. In years past, some held opinions that pin holes do not greatly affect static shielding of metallized bags. There is, however, minimal published data to fall back upon regarding this subject matter.

author_jonassen-niels

Are Ions Good for You?

Associate Professor Neils Jonassen authored a bi-monthly static column that appeared in Compliance Engineering Magazine. The series explored charging, ionization, explosions, and other ESD related topics. The E... Read More...
1307 F2 cover

Experiments In EMC: How Common Mode Currents Are Created

1307 F2 cover“I’ve all ready read the books on EMC and visited a lot of home pages... But all these references did not mention anything about the physical phenomenon that causes common mode currents... Are common mode emissions inherent in any physical system? Can I model them?” Overheard on the ‘Net

It’s by no means a trivial question. And, in spite of decades of hand waving by authors and consultants, the principal mechanism by which common mode currents are created in digital devices was not well understood until the decade of the 90s. In this article, we’ll explore the physics behind the creation of common mode currents, and perform some experiments to verify our understanding.

1307 F4 cover

A Broadband, Low-Noise Time-Domain System for EMI Measurements through Ka-Band up to 40 GHz

1307 F4 coverIn this article, a time-domain EMI measurement system for the frequency range from 10 Hz to 40 GHz is presented. Signals with a frequency of up to 1.1 GHz are sampled by an ultra-fast floating-point analog-to-digital-converter (ADC) and processed in real-time on a field-programmable-gatearray (FPGA). An ultra-broadband multi-stage down-converter allows for the measurement of signals with frequencies up to 40 GHz. Measurement times can be reduced by several orders of magnitude compared to traditional EMI-receivers that work in frequency-domain.

X