Information on the latest design practices, general tips, recommended tools, and considerations for pre and post product development.

Another Opinion on Automobile Sudden Unexpected Acceleration EMI Connection

There has been much to do about the sudden unexpected acceleration EMI connection. There is no shortage of opinions on this subject. We’ve heard from manufacturers and their EMI consultants as well as from many recognized industrial and academic EMI experts. Most manufacturers have been very supportive of each other but have been very careful not to utter direct EMI related statements as they would rather not be seen in the spotlight of any investigations aimed in their direction. I guess they think that the EMI gods have decided to target just one automobile manufacturer.

A Dash of Maxwell’s: A Maxwell’s Equations Primer – Part 4: Equations Even a Computer Can Love

In the preceding chapters we have derived Maxwell’s Equations and expressed them in their “integral” and “differential” form. In different ways, both forms lend themselves to a certain intuitive understanding of the nature of electromagnetic fields and waves. In this installment, we will express Maxwell’s Equations in their “computational form,” a form that allows our computers to do the work.


A Dash of Maxwell’s: A Maxwell’s Equations Primer – Part 3: The Difference a Del Makes

In Chapter 2, I introduced Maxwell’s Equations in their “integral form.” Simple in concept, the integral form can be devilishly difficult to work with. To overcome that, scientists and engineers have evolved a number of different ways to look at the problem, including this, the “differential form of the Equations.” The differential form makes use of vector operations.


ESD Diagnostics Tools and Methodology

This article focuses on methodology, techniques and tools to identify, classify and quantify ESD occurrences in back-end semiconductor and electronics assembly manufacturing. Proper methodology of detecting and measuring ESD Events in working tools handling ESD-sensitive components, identifying CDM-type of discharges and associating discharges with the specific steps of the process is described in details on a level usable to a wide range of specialists. Use of tools, such as high-speed storage oscilloscopes, special antennae, ESD detectors and monitors will be explained in detail. This article should benefit increasing numbers of process engineers who are struggling to maintain yield while the devices are getting increasingly more and more ESD-sensitive.


A Dash of Maxwell’s: A Maxwell’s Equations Primer – Part 2: Why Things Radiate

In Chapter I, I introduced Maxwell’s Equations for the static case, that is, where charges in free space are fixed, and only direct current flows in conductors. In this chapter, I’ll make the modifications to Maxwell’s Equations necessary to encompass the “dynamic” case, that is where magnetic and electric fields are changing. Then I will try to explain why things radiate.


A Dash of Maxwell’s: A Maxwell’s Equations Primer – Part 1: An Introduction

Maxwell’s Equations are eloquently simple yet excruciatingly complex. Their first statement by James Clerk Maxwell in 1864 heralded the beginning of the age of radio and, one could argue, the age of modern electronics as well. Maxwell pulled back the curtain on one of the fundamental secrets of the universe. These equations just don’t give the scientist or engineer insight, they are literally the answer to everything RF.