Get our free email newsletter

glen dash

Remembering Glen Dash, Inventor, Engineer, Explorer, and Friend

It is with profound sadness and broken hearts that we here at In Compliance...

Lenny and Goliath: A Modern Fable

In the beginning there was Underwriters Laboratories, and not much else.

A Dash of Maxwell’s: A Maxwell’s Equations Primer – Part Two

Maxwell’s Equations are eloquently simple yet excruciatingly complex. Their first statement by James Clerk Maxwell in 1864 heralded the beginning of the age of radio and, one could argue, the age of modern electronics.

A Dash of Maxwell’s: A Maxwell’s Equations Primer – Part One

Solving Maxwell’s Equations for real-life situations, like predicting the RF emissions from a cell tower, requires more mathematical horsepower than any individual mind can muster. These equations don’t give the scientist or engineer just insight, they are literally the answer to everything RF.

Experiments In EMC: How Common Mode Currents Are Created

1307 F2 cover“I’ve all ready read the books on EMC and visited a lot of home pages... But all these references did not mention anything about the physical phenomenon that causes common mode currents... Are common mode emissions inherent in any physical system? Can I model them?” Overheard on the ‘Net

It’s by no means a trivial question. And, in spite of decades of hand waving by authors and consultants, the principal mechanism by which common mode currents are created in digital devices was not well understood until the decade of the 90s. In this article, we’ll explore the physics behind the creation of common mode currents, and perform some experiments to verify our understanding.

- From Our Sponsors -

Rethinking the Role of Power and Return Planes

There may be a better use for PCB planes than to just distribute power, namely to provide shielding.

A Dash of Maxwell’s: A Maxwell’s Equations Primer – Part 6: The Method of Moments

The Method of Moments has become one of the most powerful tools in the RF engineer’s arsenal. In this chapter, we make the transition from theory to practice, first by attempting to compute the characteristics of a “short dipole” by hand, and then by demonstrating that a computer can do that in just a few seconds.

 

A Dash of Maxwell’s: A Maxwell’s Equations Primer – Part 5: Radiation from a Small Wire Element

It is time to put these equations to work by computing the radiation from a simple structure, a short wire element.

 

A Dash of Maxwell’s: A Maxwell’s Equations Primer – Part 4: Equations Even a Computer Can Love

In the preceding chapters we have derived Maxwell’s Equations and expressed them in their “integral” and “differential” form. In different ways, both forms lend themselves to a certain intuitive understanding of the nature of electromagnetic fields and waves. In this installment, we will express Maxwell’s Equations in their “computational form,” a form that allows our computers to do the work.

Circuit Models Make Shield Design Simple

Please view the Digital Edition to read the article (click here).
- From Our Sponsors -

Digital Sponsors

Become a Sponsor

Discover new products, review technical whitepapers, read the latest compliance news, trending engineering news, and weekly recall alerts.

Get our email updates

What's New

- From Our Sponsors -

Sign up for the In Compliance Email Newsletter

Discover new products, review technical whitepapers, read the latest compliance news, trending engineering news, and weekly recall alerts.