Get our free email newsletter

electromagnetic compatibility

The Future of EMC Engineering: Why FR-4 is Obsolete for Tomorrow’s Technology

A discussion topic between designers, namely those who only do circuit design and have no interest in the field of EMC, and compliance engineers attempting to meet regulatory compliance requirements, is the use of FR-4 as the core material for printed circuit board construction. Fiberglass Resin (FR) is low cost and has been used in almost every electrical product for decades, with exceptions such as military and satellite applications, harsh environmental conditions, and other unique uses. The disagreement lies with the extent that we can use FR-4 in high frequency applications and should we be concerned more with electrical performance or manufacturing and assembly.

Electromagnetic Compatibility Comes of Age

The science of electromagnetic compatibility has been in exis­tence for several decades. As an art, it goes back much further, perhaps to the time of Edison when he was just beginning to experiment with practical electrical devices. I am sure that with some of his more sophisticated devices undesired interac­tions took place because of inadequate shielding or filtering. Certainly, with the advent of radio, incompatibility problems occurred as a result of the poor quality of transmitters and receivers. Perhaps the first formal recognition of electromag­netic compatibility problems occurred when the telephone and power companies found they had mutual coupling problems when their lines were carried on the same utility poles. Later on, the increasing use of the radio spectrum called for formal controls administered by departments in the post, telephone, and telegraph offices in many countries, or through the Feder­al Communications Commission in the United States.

EMC and Railway Safety

The railway environment is generally regarded as a “severe” electromagnetic environment. For an electrified railway, Megawatts of power are required to be converted into the propulsion of trains in order to transport passengers or freight from one destination to another. The railway presents a complex electromagnetic environment made up of many systems including signalling, traction, telecommunications and radiocommunications.

List of EMC Directive Standards

Please view the Digital Edition to read the article (click here).

EMC and Measurement Uncertainty – LAB 34 and CISPR 16-4-2

Two of the more important publications in the area of Electromagnetic Compatibility (EMC) and Measurement Uncertainty (MU) are LAB 34 and CISPR 16-4-2. EMC and Measurement Uncertainty are receiving more attention as other CISPR Product Family Standards begin to adopt MU. LAB 34 is “The Expression of Uncertainty in EMC Testing” and is published by the United Kingdom Accreditation Service (UKAS). CISPR 16-4-2 is published by the International Electrotechnical Commission (IEC) and is titled “Specification for Radio Disturbance and Immunity Measuring Apparatus and Methods – Part 4-2: Uncertainties, Statistics, and Limit Modeling – Uncertainty in EMC Measurements.” This article compares and contrasts the two MU documents.

- From Our Sponsors -

EMC Standards from a European Perspective

This article will provide essential information on the selection and use of the appropriate standards for your products that come within the scope of the EMC Directive 2004/108/EC.

Digital Sponsors

Become a Sponsor

Discover new products, review technical whitepapers, read the latest compliance news, trending engineering news, and weekly recall alerts.

Get our email updates

What's New

- From Our Sponsors -

Sign up for the In Compliance Email Newsletter

Discover new products, review technical whitepapers, read the latest compliance news, trending engineering news, and weekly recall alerts.