Get our free email newsletter

Scientists Share New Insights on 2-D Topological Insulators

Credit: CIC nanoGUNE

A research collaborative has shared some fascinating new insights into the world of 2-D topological insulators. In an article published in Physical Review Letters, the researchers reported on the electronic conduction and interference on the insulators. These insulators — and the information we’ve garnered about them — could provide essential tools in creating a whole new generation of electronic devices.

2-D topological insulators are not commonly used. They conduct only at the edge, unlike traditional insulators. Additionally, their electronic structure is mathematically classified in a different manner than normal insulators. Topological insulators have proved a fascinating development for scientists, with good reason. While they remain insulating in the bulk, they are also excellent conductors at the edge. This means that electrons can travel in quantum channels in either direction, although they cannot change direction at any time. However, applying an external magnetic field changes the rules, and allows the electrons to turn as needed.

These factors were incredibly significant in the research of the scientific team. Their work provides insightful new information on some of the fundamental properties of the topological edge state. The scientists can also now propose new strategies to improve these interactions.

- Partner Content -

Pulse Amplifier Definitions and Terminology

This application note serves as a comprehensive resource, defining key terms like duty cycle, pulse rate, rise/fall time, and pulse width, as well as discussing pulse on/off ratio, RF delay, jitter, and stability.

“In our work, we tested the consequences of electron U-turns in the conduction of our devices. We also showed how under certain circumstances, electrons allowed to turn seem to do it in an orderly manner, as if in some kind of roundabout, generating a constructive interference.”

M. R. Calvo, Department of Physics at Stanford University and lead author on the study

This research marks a dramatic change in how insulating materials are thought of. Traditionally they have not been considered a compelling topic for research — at least from an electronics point of view. Since electrons are immobile and therefore unable to contribute to electrical conduction, there hasn’t been much for researchers to investigate. These 2-D topological insulators have changed all that.

Besides painting insulating materials in a new and far more intriguing light, this research has significantly expanded scientist’s understanding on numerous topics. This is particularly true regarding the fundamental properties of the edge states, as well as their conduction properties in 2-D topological insulators. By controlling the properties and interactions of these various states, scientists will be able to develop a whole new generation of electronic devices. These devices will be based on the fundamental quantum properties of these materials. Insulating materials have never looked so fascinating.

Related Articles

Digital Sponsors

Become a Sponsor

Discover new products, review technical whitepapers, read the latest compliance news, and check out trending engineering news.

Get our email updates

What's New

- From Our Sponsors -

Sign up for the In Compliance Email Newsletter

Discover new products, review technical whitepapers, read the latest compliance news, and trending engineering news.