Get our free email newsletter

Rohde & Schwarz Introduces the MXO 5C Series

Rohde & Schwarz introduces the new MXO 5C oscilloscope with four or eight channels. The new series is based on the next-generation MXO 5 oscilloscope and specifically addresses rack mount and automated test system applications where users are often confronted with space limitations. The instrument’s 2U vertical height – just 3.5” or 8.9 cm – allows engineers to deploy it in test systems where a traditional oscilloscope with a large display would not fit. The compact form factor is also of value in applications with high channel density where users need a large number of channels in a small volume. Users operate the instrument via the integrated web interface, or they interact with it exclusively programmatically and use the instrument as a high-speed digitizer.

Like other MXO oscilloscopes, the new MXO 5C series builds on next-generation MXO-EP processing ASIC technology developed by Rohde & Schwarz. It offers the fastest acquisition capture rate in the world of up to 4.5 million acquisitions per second. This makes it the world’s first compact oscilloscope that allows engineers to capture up to 99% real-time signal activity enabling them to see more signal details and infrequent events better than with any other oscilloscope.

Philip Diegmann, Vice President Oscilloscopes at Rohde & Schwarz, said: “While oscilloscopes with large displays work well for bench usage, we’ve had a number of customers ask for a version that is tailored for rack mount applications. At the same time, we have customers who need a large channel count, for example in physics. With the MXO 5C we created a unique instrument that offers the best possible performance for both scenarios.” The new form factor allows to place many channels in close proximity. The eight-channel model of the MXO 5C provides a channel density of 1500 cm3 per channel and consumes just 23 watts per channel.

- Partner Content -

A Dash of Maxwell’s: A Maxwell’s Equations Primer – Part One

Solving Maxwell’s Equations for real-life situations, like predicting the RF emissions from a cell tower, requires more mathematical horsepower than any individual mind can muster. These equations don’t give the scientist or engineer just insight, they are literally the answer to everything RF.

While primarily designed for rack mount usage, the instrument doubles as a stand-alone bench oscilloscope. Users can simply attach an external display via the built-in DisplayPort and HDMI connectors, or they can access the instrument’s GUI via a web interface by typing in the oscilloscope’s IP address into their browser. As the first oscilloscope to offer E-ink display technology, the MXO 5C shows the IP address and other critical information on a small non-volatile display on the front of instrument, which stays visible even when power is switched off.

Like the MXO 5, the MXO 5C series comes in both four and eight channel models, in bandwidth ranges with100 MHz, 200 MHz, 350 MHz, 500 MHz, 1 GHz, and 2 GHz models. The starting price of EUR 18 000 for the eight-channel models sets a new industry standard. Various upgrade options are available to users with demanding application needs, such as 16 digital channels with a mixed-signal oscilloscope (MSO) option, an integrated dual-channel 100 MHz arbitrary generator, protocol decode and triggering options for industry-standard buses and a frequency response analyzer to enhance the capabilities of the instrument.

The new MXO 5C series oscilloscopes are now available from Rohde & Schwarz and selected distribution channel partners. For more information on the instrument, go to: https://www.rohde-schwarz.com/product/MXO5C

Related Articles

Digital Sponsors

Become a Sponsor

Discover new products, review technical whitepapers, read the latest compliance news, and check out trending engineering news.

Get our email updates

What's New

- From Our Sponsors -

Sign up for the In Compliance Email Newsletter

Discover new products, review technical whitepapers, read the latest compliance news, and trending engineering news.