Scientists at Columbia Engineering and the University of Texas at Austin have unveiled a breakthrough in wave technology. Researchers successfully demonstrated a new type of circulator that allows for nonreciprocal transmission of waves. These magnet-free non-reciprocal components present a dramatic breakthrough in the modern semiconductor process, and could have major applications in a number of important fields.
The device is the first of its kind: a magnet-free non-reciprocal circulator. When placed on a silicon chip, the circulator operates at millimeter-wave frequencies. This is significant because the majority of devices are reciprocal. A signal travels forwards and backwards in much the same manner. Nonreciprocal devices differ in a significant way: they allow forward and reverse signals to be separated and move on unique paths.
Traditionally, non-reciprocal devices have had a lot working against them. Their specific requirements led them to be bulky and expensive — in a word, not viable for the world of consumer wireless electronics. The researchers behind this new circulator are determined to change that. Using high-speed transistor switches, they can route forward and reverse waves individually. This move allows the new circulators to operate at millimeter-wave frequencies, an increasingly important factor in technology.
As our devices grow faster and more complex, we run the increasing risk of running out of bandwidth. Using full-duplex communications (devices that can operate simultaneously on the same frequency channel) and using higher millimeter-wave frequencies will provide us with new bandwidth that is sorely needed.
Indeed, the potential uses for this technology are tremendous. Self-driving cars rely on fully-integrated millimeter-wave radars that must be full-duplex to correctly function. This new device promises an effective and low-cost option that could improve the safety and effectiveness of these vehicles. The circulator could also prove an enormous boon to the virtual reality industry; the headsets that plunge people into a virtual world would no longer rely on any sort of wired connection or tether to a computer. Further research is needed, but it looks like this low-cost device could end up being a financial and technological bonanza for the engineering world.