CISPR 11 is the International Standard for electromagnetic emissions (disturbances) from Industrial, Scientific and Medical (ISM) Equipment. The official title of the standard is “Industrial, Scientific, and Medical Equipment – Radio-Frequency Disturbance Characteristics – Limits and Methods of Measurement.” The premiere edition of the standard was released in 1975 and the latest edition (Edition 5.0) was released in 2009. The standard includes both limits and methods of measurement for conducted phenomena and radiated phenomena. This article traces the history and development of the content of the standard over the last 35 years.
A ferrite bead is a passive device that removes noise energy from a circuit in the form of heat. The bead creates impedance over a broad frequency range that eliminates all or part of the undesired noise energy over that frequency range.
No matter the company’s definition of “global,” there are several critical areas they should address to ensure they are truly ready to place products on markets worldwide.
Electromagnetic disturbances can greatly influence the performance of equipment and the functional safety of systems. Consider the current problems we hear in the news with unintended acceleration in some vehicles. While this complication’s true cause may never be determined, analysts have theorized that electromagnetic disturbances could play a large role. Due to the amount of electronics and ever changing technologies found in today’s automobiles, unintended acceleration is only one of many examples of unwanted anomalies that could occur due to an EMC issue. Automakers are faced everyday with the risk and associated liability that could come with a problem such as this once the vehicle is on the street with the consumer. That risk is why the automakers over time have had to develop specific test standards that relate to the EMC concerns of their vehicles and enforce their suppliers to meet them by way of specific test plans. The automotive industry is just one example of how EMC can relate to the functional safety of a product as guided by IEC TS 61000-1-2: 2008.
In earlier articles in this publication we have discussed the charged device model (CDM) testing of small devices. In the first article we demonstrated that the peak current for small devices does not become vanishingly small.1 The commonly held belief of vanishing current for small devices was shown to be an artifact of measuring the current with the 1 GHz oscilloscope2 specified in the JEDEC CDM standard.6 The second article explained various ways to make CDM testing of small devices more reliable with the use of small surrogate packages, or the use of templates to hold the device during testing.3 In this article we will show how insight can be gained into the CDM testing of small devices using a simple three capacitor circuit model.4, 5
Protecting your products from the effects of static damage begins by understanding the key concepts involved in electrostatics and Electrostatic Discharge. This is Part 1 of a six-part series on The Fundamentals of Electrostatic Discharge (ESD), 2010. It addresses the impact of ESD productivity and product reliability. The ESD fundamentals were first developed in 2001 by the ESD Association. In Part 1: An Introduction to ESD; the basics of electrostatic charge, discharge, types of failures, ESD events, and device sensitivity are discussed.
Digital Sponsors
Discover new products, review technical whitepapers, read the latest compliance news, and check out trending engineering news.