Arturo Mediano received his M.Sc. (1990) and his Ph. D. (1997) in Electrical Engineering from University of Zaragoza (Spain), where he has held a teaching professorship in EMI/EMC/RF/SI from 1992. From 1990, he has been involved in R&D projects in EMI/EMC/SI/RF fields for communications, industry and scientific/medical applications with a solid experience in training, consultancy and troubleshooting for companies in Spain, USA, Switzerland, France, UK, Italy, Belgium, Germany, Canada, The Netherlands, Portugal, and Singapore. He is the founder of The HF-Magic Lab®, a specialized laboratory for design, diagnostic, troubleshooting, and training in the EMI/EMC/SI and RF fields at I3A (University of Zaragoza), and from 2011, he is instructor for Besser Associates (CA, USA) offering public and on site courses in EMI/EMC/SI/RF subjects through the USA, especially in Silicon Valley/San Francisco Bay Area. He is Senior Member of the IEEE, active member from 1999 (Chair 2013-2016) of the MTT-17 (HF/VHF/UHF) Technical Committee of the Microwave Theory and Techniques Society and member of the Electromagnetic Compatibility Society.
For many applications, especially in digital designs, you can see decoupling networks composed of several different (big and small) capacitors in parallel. But, sometimes this technique can be dangerous.
You can minimize your EMI/EMC and SI/PI problems by working as slow as possible. This is very well known advice from many experts, books, and seminars: you can minimize or solve electromagnetic interference (emissions/susceptibility) and signal or power integrity problems working as slow as possible.
When designing an EMI/EMC filter the orientation relative to source and victim is critical for high effectiveness. Can you save components in your filters?
If you are a novice designer of electronic circuits, this is one of the best pieces of advice I can give you from my experience in EMI troubleshooting and training.