Get our free email newsletter

Optical Nanocavity Could Improve 2D Electronics

An optical nanocavity made, from top to bottom, of molybdenum disulfide (MoS2), aluminum oxide and aluminum.  Credit: The University at Buffalo.
An optical nanocavity made, from top to bottom, of molybdenum disulfide (MoS2), aluminum oxide and aluminum. Credit: The University at Buffalo.

When engineers are faced with the task of designing thin, flexible electronics, there is a natural conundrum: conventional materials are too thick, but ultrathin semiconductors don’t absorb light as well as bulk semiconductors. A team of electrical engineering researchers have come up with a potential solution: they placed a 2D semiconductor on top of a mirrored structure that improves the material’s absorption of light.

Researchers from Penn State and The University at Buffalo used a 2D semiconductor called molybdenum disulfide (MoS2). Today, MoS2 is used in lubricants and steel alloys, but it is also being investigated as a possible material for optoelectronics. It is an especially promising 2D option, because unlike graphene, its bandgap is similar to semiconductors that are commonly used in LEDs, lasers, and solar cells.

A single layer of MoS2 was placed on top of an optical nanocavity—a type of photonic structure that is used in lasers and fiber optic communication to allow beams of light to circulate in closed paths. In this case, they made an arrangement of mirrors out of aluminum oxide and aluminum. In experiments, the MoS2 nanocavity absorbed nearly 70 percent of the laser that was projected onto it.

- Partner Content -

A Dash of Maxwell’s: A Maxwell’s Equations Primer – Part One

Solving Maxwell’s Equations for real-life situations, like predicting the RF emissions from a cell tower, requires more mathematical horsepower than any individual mind can muster. These equations don’t give the scientist or engineer just insight, they are literally the answer to everything RF.

The nanocavity we have developed has many potential applications. It could potentially be used to create more efficient and flexible solar panels, and faster photodetectors for video cameras and other devices. It may even be used to produce hydrogen fuel through water splitting more efficiently.

Qiaoqiang Gan, PhD, Buffalo State

The researchers described their work in a paper called “MoS2 monolayers on nanocavities: enhancement in light-matter interaction,” which published in April by the journal 2D Materials.

Source: The State University of New York at Buffalo

Related Articles

Digital Sponsors

Become a Sponsor

Discover new products, review technical whitepapers, read the latest compliance news, and check out trending engineering news.

Get our email updates

What's New

- From Our Sponsors -

Sign up for the In Compliance Email Newsletter

Discover new products, review technical whitepapers, read the latest compliance news, and trending engineering news.